UNK-VQA : A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models

Teaching Visual Question Answering (VQA) models to refrain from answering unanswerable questions is necessary for building a trustworthy AI system. Existing studies, though have explored various aspects of VQA but somewhat ignored this particular attribute. This paper aims to bridge the research gap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 02. Aug.
1. Verfasser: Guo, Yangyang (VerfasserIn)
Weitere Verfasser: Jiao, Fangkai, Shen, Zhiqi, Nie, Liqiang, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM375810943
003 DE-627
005 20240803233145.0
007 cr uuu---uuuuu
008 240803s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3437288  |2 doi 
028 5 2 |a pubmed24n1490.xml 
035 |a (DE-627)NLM375810943 
035 |a (NLM)39093673 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yangyang  |e verfasserin  |4 aut 
245 1 0 |a UNK-VQA  |b A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Teaching Visual Question Answering (VQA) models to refrain from answering unanswerable questions is necessary for building a trustworthy AI system. Existing studies, though have explored various aspects of VQA but somewhat ignored this particular attribute. This paper aims to bridge the research gap by contributing a comprehensive dataset, called UNK-VQA. The dataset is specifically designed to address the challenge of questions that models do not know. To this end, we first augment the existing data via deliberate perturbations on either the image or question. In specific, we carefully ensure that the question-image semantics remain close to the original unperturbed distribution. By this means, the identification of unanswerable questions becomes challenging, setting our dataset apart from others that involve mere image replacement. We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models and discover their significant limitations when applied to our dataset. Additionally, we also propose a straightforward method to tackle these unanswerable questions. This dataset, we believe, will serve as a valuable benchmark for enhancing the abstention capability of VQA models, thereby leading to increased trustworthiness of AI systems. We have made the dataset available to facilitate further exploration in this area 
650 4 |a Journal Article 
700 1 |a Jiao, Fangkai  |e verfasserin  |4 aut 
700 1 |a Shen, Zhiqi  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 02. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:02  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3437288  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 02  |c 08