Perception-Distortion Balanced Super-Resolution : A Multi-Objective Optimization Perspective

High perceptual quality and low distortion degree are two important goals in image restoration tasks such as super-resolution (SR). Most of the existing SR methods aim to achieve these goals by minimizing the corresponding yet conflicting losses, such as the l1 loss and the adversarial loss. Unfortu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 4444-4458
1. Verfasser: Sun, Lingchen (VerfasserIn)
Weitere Verfasser: Liang, Jie, Liu, Shuaizheng, Yong, Hongwei, Zhang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375759638
003 DE-627
005 20240807233106.0
007 cr uuu---uuuuu
008 240802s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3434426  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM375759638 
035 |a (NLM)39088501 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Lingchen  |e verfasserin  |4 aut 
245 1 0 |a Perception-Distortion Balanced Super-Resolution  |b A Multi-Objective Optimization Perspective 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a High perceptual quality and low distortion degree are two important goals in image restoration tasks such as super-resolution (SR). Most of the existing SR methods aim to achieve these goals by minimizing the corresponding yet conflicting losses, such as the l1 loss and the adversarial loss. Unfortunately, the commonly used gradient-based optimizers, such as Adam, are hard to balance these objectives due to the opposite gradient decent directions of the contradictory losses. In this paper, we formulate the perception-distortion trade-off in SR as a multi-objective optimization problem and develop a new optimizer by integrating the gradient-free evolutionary algorithm (EA) with gradient-based Adam, where EA and Adam focus on the divergence and convergence of the optimization directions respectively. As a result, a population of optimal models with different perception-distortion preferences is obtained. We then design a fusion network to merge these models into a single stronger one for an effective perception-distortion trade-off. Experiments demonstrate that with the same backbone network, the perception-distortion balanced SR model trained by our method can achieve better perceptual quality than its competitors while attaining better reconstruction fidelity. Codes and models can be found at https://github.com/csslc/EA-Adam 
650 4 |a Journal Article 
700 1 |a Liang, Jie  |e verfasserin  |4 aut 
700 1 |a Liu, Shuaizheng  |e verfasserin  |4 aut 
700 1 |a Yong, Hongwei  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 4444-4458  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:4444-4458 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3434426  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 4444-4458