Climate change alters social-ecological trade-offs in achieving ocean futures' targets

© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 8 vom: 31. Juli, Seite e17442
1. Verfasser: Zeng, Zeyu (VerfasserIn)
Weitere Verfasser: Lam, Vicky W Y, Sumaila, U Rashid, Cheung, William W L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article ECS ecosystem NSCS ecosystem climate change fishery resources trade‐offs
Beschreibung
Zusammenfassung:© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
The effects of climate change on marine ecosystems are causing cascading impacts on livelihood, food security, and culture through fisheries. Such impacts interact and exacerbate the effects of overfishing on marine social-ecological systems, complicating the rebuilding of ecosystems to achieve desirable and sustainable ocean futures. Developing effective pathways for ecosystem rebuilding requires consideration of the co-benefits and trade-offs between ecological and social dimensions and between fishing sectors. However, the effects of intensifying climate change on such co-benefits or trade-offs are yet to be well understood, particularly in regions where ecosystem rebuilding is urgently needed. We applied a numerical optimization routine to define the scope for improvement toward the Pareto-frontier for ecological robustness and economic benefits of the northern South China Sea (NSCS) and the East China Sea (ECS) ecosystems. These two ecosystems were used to represent over-exploited low- and mid-latitude systems, respectively, and the optimization aimed to improve their status through fisheries management. We find that the ECS ecosystem has the possibility of increasing the economic benefits generated by the fisheries it supports under climate change by 2050 while increasing the uncertainty of achieving biodiversity objectives. Nevertheless, climate change is projected to reduce the scope to restore ecosystem structures and the potential economic benefits in the NSCS ecosystem. This study highlights the contrasting impacts of climate change on the co-benefits/trade-offs in ecosystem rebuilding and the benefits obtainable by different fishing sectors even in neighboring ecosystems. We conclude that consideration at the nexus of climate-biodiversity-fisheries is a key to developing effective ecosystem rebuilding plan
Beschreibung:Date Completed 31.07.2024
Date Revised 31.07.2024
published: Print
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.17442