Identification of a novel gene, Bryophyte Co-retained Gene 1, that has a positive role in desiccation tolerance in the moss Physcomitrium patens
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink serv...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 75(2024), 20 vom: 30. Okt., Seite 6609-6624 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Bryophyte Co-retained Gene 1 (BCG1) Physcomitrium patens Abscisic acid antioxidant activity calcium homeostasis co-expression network desiccation tolerance molecular adaptation moss mehr... |
Zusammenfassung: | © The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. The moss Physcomitrium patens is a model system for the evolutionary study of land plants, and as such, it may contain as yet unannotated genes with functions related to the adaptation to water deficiency that was required during the water-to-land transition. In this study, we identified a novel gene, Bryophyte Co-retained Gene 1 (BCG1), in P. patens that is responsive to dehydration and rehydration. Under de- and rehydration treatments, BCG1 was significantly co-expressed with DHNA, which encodes a dehydrin (DHN). Examination of previous microarray data revealed that BCG1 is highly expressed in spores, archegonia (female reproductive organ), and mature sporophytes. In addition, the bcg1 mutant showed reduced dehydration tolerance, and this was accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the disruption to BCG1. Experimental evidence showed that BCG1 might function in antioxidant activity, the abscisic acid pathway, and in intracellular Ca2+ homeostasis to resist desiccation. Overall, our results provide insights into the role of a bryophyte co-retained gene in desiccation tolerance |
---|---|
Beschreibung: | Date Completed 30.10.2024 Date Revised 27.11.2024 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erae332 |