|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM375695427 |
003 |
DE-627 |
005 |
20240731233920.0 |
007 |
cr uuu---uuuuu |
008 |
240731s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202408159
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1487.xml
|
035 |
|
|
|a (DE-627)NLM375695427
|
035 |
|
|
|a (NLM)39082060
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liang, Shuofeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 31.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a flow temperature
|
650 |
|
4 |
|a nanocomposite
|
650 |
|
4 |
|a nanoimprint lithography
|
650 |
|
4 |
|a photoresponsive
|
650 |
|
4 |
|a polymer
|
700 |
1 |
|
|a Yuan, Chenrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nie, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yazhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Dachuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Wen-Cong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Chengwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Guofeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Si
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 31. Juli, Seite e2408159
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:31
|g month:07
|g pages:e2408159
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202408159
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 31
|c 07
|h e2408159
|