Tailoring Interfacial Structures to Regulate Carrier Transport in Solid-State Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 31. Juli, Seite e2407923
1. Verfasser: Deng, Zhikang (VerfasserIn)
Weitere Verfasser: Chen, Shiming, Yang, Kai, Song, Yongli, Xue, Shida, Yao, Xiangming, Yang, Luyi, Pan, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review apparent electrode/SEs interfaces carrier transport network internal interfaces solid‐state lithium‐ion batteries
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Solid-state lithium-ion batteries (SSLIBs) have been considered as the priority candidate for next-generation energy storage system, due to their advantages in safety and energy density compare with conventional liquid electrolyte systems. However, the introduction of numerous solid-solid interfaces results in a series of issues, hindering the further development of SSLIBs. Therefore, a thorough understanding on the interfacial issues is essential to promote the practical applications for SSLIBs. In this review, the interface issues are discussed from the perspective of transportation mechanism of electrons and lithium ions, including internal interfaces within cathode/anode composites and solid electrolytes (SEs), as well as the apparent electrode/SEs interfaces. The corresponding interface modification strategies, such as passivation layer design, conductive binders, and thermal sintering methods, are comprehensively summarized. Through establishing the correlation between carrier transport network and corresponding battery electrochemical performance, the design principles for achieving a selective carrier transport network are systematically elucidated. Additionally, the future challenges are speculated and research directions in tailoring interfacial structure for SSLIBs. By providing the insightful review and outlook on interfacial charge transfer, the industrialization of SSLIBs are aimed to promoted
Beschreibung:Date Revised 31.07.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202407923