Solvent Effect for the Structural Control of Molecular Architectures Consisting of Trinuclear Ruthenium Clusters and Ligands at the HOPG Surface

The molecular architecture of a triruthenium complex and 1,4-di(4-pyridyl)benzene on highly oriented pyrolytic graphite was investigated by drop-casting mixed tetrahydrofuran and methanol solutions. Atomic force microscopy revealed the formation of one-dimensional molecular wires on highly oriented...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 32 vom: 13. Aug., Seite 16921-16928
1. Verfasser: Inoue, Aoi (VerfasserIn)
Weitere Verfasser: Abe, Masaaki, Yoshimoto, Soichiro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The molecular architecture of a triruthenium complex and 1,4-di(4-pyridyl)benzene on highly oriented pyrolytic graphite was investigated by drop-casting mixed tetrahydrofuran and methanol solutions. Atomic force microscopy revealed the formation of one-dimensional molecular wires on highly oriented pyrolytic graphite after heating the mixed tetrahydrofuran solution, whereas large ring structures were formed in the methanolic solution. It was found that the molecular architectures composed of triruthenium complexes and 1,4-di(4-pyridyl)benzene strongly depend not only on the temperature of the solution but also on the organic solvents. The formation of the molecular architecture was supported by the ultraviolet-visible absorption spectra of the mixed solution and the electrochemical responses of the deposited film
Beschreibung:Date Revised 13.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c01652