Adaptive Blind Super-Resolution Network for Spatial-Specific and Spatial-Agnostic Degradations

Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be rou...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 07., Seite 4404-4418
1. Verfasser: Wen, Weilei (VerfasserIn)
Weitere Verfasser: Guo, Chunle, Ren, Wenqi, Wang, Hongpeng, Shao, Xiuli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375662502
003 DE-627
005 20240807233052.0
007 cr uuu---uuuuu
008 240731s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3425169  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM375662502 
035 |a (NLM)39078763 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Weilei  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Blind Super-Resolution Network for Spatial-Specific and Spatial-Agnostic Degradations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets 
650 4 |a Journal Article 
700 1 |a Guo, Chunle  |e verfasserin  |4 aut 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Wang, Hongpeng  |e verfasserin  |4 aut 
700 1 |a Shao, Xiuli  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 07., Seite 4404-4418  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:07  |g pages:4404-4418 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3425169  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 07  |h 4404-4418