Machine Learning-Aided Design of Highly Conductive Anion Exchange Membranes for Fuel Cells and Water Electrolyzers

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 29. Sept., Seite e2404981
1. Verfasser: Zhang, Qiuhuan (VerfasserIn)
Weitere Verfasser: Yuan, Yongjiang, Zhang, Jiale, Fang, Pengda, Pan, Ji, Zhang, Hao, Zhou, Tao, Yu, Qikun, Zou, Xiuyang, Sun, Zhe, Yan, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article anion exchange membrane fuel cell fully connected neural network high conductivity machine learning water electrolyzer
LEADER 01000caa a22002652 4500
001 NLM375633146
003 DE-627
005 20240918232515.0
007 cr uuu---uuuuu
008 240730s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202404981  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM375633146 
035 |a (NLM)39075826 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Qiuhuan  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning-Aided Design of Highly Conductive Anion Exchange Membranes for Fuel Cells and Water Electrolyzers 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Alkaline anion exchange membrane (AEM)-based fuel cells (AEMFCs) and water electrolyzers (AEMWEs) are vital for enabling the efficient and large-scale utilization of hydrogen energy. However, the performance of such energy devices is impeded by the relatively low conductivity of AEMs. The conventional trial-and-error approach to designing membrane structures has proven to be both inefficient and costly. To address this challenge, a fully connected neural network (FCNN) model is developed based on acid-catalyzed AEMs to analyze the relationship between structure and conductivity among 180,000 AEM variations. Under machine learning guidance, anilinium cation-type membranes are designed and synthesized. Molecular dynamics simulations and Mulliken charge population analysis validated that the presence of a large anilinium cation domain is a result of the inductive effect of N+ and benzene rings. The interconnected anilinium cation domains facilitated the formation of a continuous ion transport channel within the AEMs. Additionally, the incorporation of the benzyl electron-withdrawing group heightened the inductive effect, leading to high conductivity AEM variant as screened by the machine learning model. Furthermore, based on the highly active and low-cost monomers given by machine learning, the large-scale synthesis of anilinium-based AEMs confirms the potential for commercial applications 
650 4 |a Journal Article 
650 4 |a anion exchange membrane 
650 4 |a fuel cell 
650 4 |a fully connected neural network 
650 4 |a high conductivity 
650 4 |a machine learning 
650 4 |a water electrolyzer 
700 1 |a Yuan, Yongjiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiale  |e verfasserin  |4 aut 
700 1 |a Fang, Pengda  |e verfasserin  |4 aut 
700 1 |a Pan, Ji  |e verfasserin  |4 aut 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
700 1 |a Zhou, Tao  |e verfasserin  |4 aut 
700 1 |a Yu, Qikun  |e verfasserin  |4 aut 
700 1 |a Zou, Xiuyang  |e verfasserin  |4 aut 
700 1 |a Sun, Zhe  |e verfasserin  |4 aut 
700 1 |a Yan, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 36 vom: 29. Sept., Seite e2404981  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:36  |g day:29  |g month:09  |g pages:e2404981 
856 4 0 |u http://dx.doi.org/10.1002/adma.202404981  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 36  |b 29  |c 09  |h e2404981