|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM375602887 |
003 |
DE-627 |
005 |
20250306113146.0 |
007 |
cr uuu---uuuuu |
008 |
240729s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.27459
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1251.xml
|
035 |
|
|
|a (DE-627)NLM375602887
|
035 |
|
|
|a (NLM)39072777
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Kai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fault-tolerant quantum chemical calculations with improved machine-learning models
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley Periodicals LLC.
|
520 |
|
|
|a Easy and effective usage of computational resources is crucial for scientific calculations. Following our recent work of machine-learning (ML) assisted scheduling optimization [J. Comput. Chem. 2023, 44, 1174], we further propose (1) the improved ML models for the better predictions of computational loads, and as such, more elaborate load-balancing calculations can be expected; (2) the idea of coded computation, that is, the integration of gradient coding, in order to introduce fault tolerance during the distributed calculations; and (3) their applications together with re-normalized exciton model with time-dependent density functional theory (REM-TDDFT) for calculating the excited states. Illustrated benchmark calculations include P38 protein, and solvent model with one or several excitable centers. The results show that the improved ML-assisted coded calculations can further improve the load-balancing and cluster utilization, owing primarily profit in fault tolerance that aims at the automated quantum chemical calculations for both ground and excited states
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a coded computing
|
650 |
|
4 |
|a exciton model
|
650 |
|
4 |
|a fragmented approach
|
650 |
|
4 |
|a interacting energy
|
650 |
|
4 |
|a load‐balancing
|
700 |
1 |
|
|a Zhou, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Ning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Tianyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Bowen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Danhuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yingjin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 45(2024), 31 vom: 05. Dez., Seite 2640-2658
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnas
|
773 |
1 |
8 |
|g volume:45
|g year:2024
|g number:31
|g day:05
|g month:12
|g pages:2640-2658
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.27459
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2024
|e 31
|b 05
|c 12
|h 2640-2658
|