Statistical clustering of documents via stochastic blockmodels

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 10 vom: 02., Seite 1878-1893
1. Verfasser: Atandoh, Paul H (VerfasserIn)
Weitere Verfasser: Lee, Kevin H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62R07 68T50 Amazon product review dataset Documents clustering stochastic blockmodels text data topic modeling
LEADER 01000caa a22002652 4500
001 NLM375587624
003 DE-627
005 20240902233203.0
007 cr uuu---uuuuu
008 240729s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2023.2247617  |2 doi 
028 5 2 |a pubmed24n1520.xml 
035 |a (DE-627)NLM375587624 
035 |a (NLM)39071253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Atandoh, Paul H  |e verfasserin  |4 aut 
245 1 0 |a Statistical clustering of documents via stochastic blockmodels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a As the online market grows rapidly, people are relying more on product review when they purchase the product. Hence, many companies and researchers are interested in analyzing product review which essentially a text data. In the current literature, it is common to use only text analysis tools to analyze text dataset. But in our work, we propose a method that utilizes both text analysis method such as topic modeling and statistical network model to build network among individuals and find interesting communities. We introduce a promising framework that incorporates topic modeling technique to define the edges among the individuals and form a network and uses stochastic blockmodels (SBM) to find the communities. The power of our proposed method is demonstrated in real-world application to Amazon product review dataset 
650 4 |a Journal Article 
650 4 |a 62R07 
650 4 |a 68T50 
650 4 |a Amazon product review dataset 
650 4 |a Documents clustering 
650 4 |a stochastic blockmodels 
650 4 |a text data 
650 4 |a topic modeling 
700 1 |a Lee, Kevin H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 10 vom: 02., Seite 1878-1893  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:10  |g day:02  |g pages:1878-1893 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2023.2247617  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 10  |b 02  |h 1878-1893