|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM375587624 |
003 |
DE-627 |
005 |
20240902233203.0 |
007 |
cr uuu---uuuuu |
008 |
240729s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2023.2247617
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1520.xml
|
035 |
|
|
|a (DE-627)NLM375587624
|
035 |
|
|
|a (NLM)39071253
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Atandoh, Paul H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Statistical clustering of documents via stochastic blockmodels
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.09.2024
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a As the online market grows rapidly, people are relying more on product review when they purchase the product. Hence, many companies and researchers are interested in analyzing product review which essentially a text data. In the current literature, it is common to use only text analysis tools to analyze text dataset. But in our work, we propose a method that utilizes both text analysis method such as topic modeling and statistical network model to build network among individuals and find interesting communities. We introduce a promising framework that incorporates topic modeling technique to define the edges among the individuals and form a network and uses stochastic blockmodels (SBM) to find the communities. The power of our proposed method is demonstrated in real-world application to Amazon product review dataset
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 62R07
|
650 |
|
4 |
|a 68T50
|
650 |
|
4 |
|a Amazon product review dataset
|
650 |
|
4 |
|a Documents clustering
|
650 |
|
4 |
|a stochastic blockmodels
|
650 |
|
4 |
|a text data
|
650 |
|
4 |
|a topic modeling
|
700 |
1 |
|
|a Lee, Kevin H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 51(2024), 10 vom: 02., Seite 1878-1893
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:51
|g year:2024
|g number:10
|g day:02
|g pages:1878-1893
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2023.2247617
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 51
|j 2024
|e 10
|b 02
|h 1878-1893
|