Exploring relationships among landfill leachate parameters through multivariate analysis for monitoring purposes
Elucidating the properties of landfill leachate and the relationships among leachate parameters is crucial for efforts to determine appropriate landfill leachate monitoring activity and management strategies. This study investigated the physical, chemical and optical parameters of leachate in an old...
Veröffentlicht in: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - (2024) vom: 28. Juli, Seite 734242X241265062 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA |
Schlagworte: | Journal Article Fluorescent dissolved organic matter landfill leachate linear regression analysis parallel factor analysis physicochemical properties principal component analysis |
Zusammenfassung: | Elucidating the properties of landfill leachate and the relationships among leachate parameters is crucial for efforts to determine appropriate landfill leachate monitoring activity and management strategies. This study investigated the physical, chemical and optical parameters of leachate in an old Japanese landfill over a 13-month period. The parameters were explored based on their relationships with the maximum fluorescence (Fmax) of three components (microbial humic-like C1, terrestrial humic-like C2 and protein-like C3) deconvoluted from excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC), chemical oxygen demand (COD), Cl- and SO42- concentrations and pH ranged from 2.6 to 38.2 mg C L-1, 9 to 324 mg L-1, 14 to 972 mg L-1, 26 to 1554 mg L-1 and 6.9 to 11.6, respectively. Linear regression analysis suggested that the Fmax values of C2 and C3 represented DOC, whereas the Fmax value of C2 alone could serve as a COD indicator. Hierarchical cluster analysis and principal component analysis were employed to successfully categorise leachate samples based on their locations. Higher dissolved organic matter levels were observed in leachate within the old disposal area, whereas elevated levels of inorganic components such as SO42- and Cl- were found in leachate collected from the extended disposal area and at a treatment facility. Statistical analysis provides crucial tools for assessing and managing various areas of a landfill, supporting targeted and effective waste management strategies |
---|---|
Beschreibung: | Date Revised 02.08.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1096-3669 |
DOI: | 10.1177/0734242X241265062 |