Electrocatalysis of CO2 Reduction by Immobilized Formate Dehydrogenase without a Metal Redox Center
Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common be...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 31 vom: 06. Aug., Seite 16249-16257 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Formate Dehydrogenases EC 1.17.1.9 Carbon Dioxide 142M471B3J Enzymes, Immobilized Gold 7440-57-5 Lipid Bilayers |
Zusammenfassung: | Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Candida boidinii was immobilized in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol floating lipid bilayer on the gold surface as a biocatalyst for electrochemical CO2 reduction. We report that, in contrast to common belief, the enzyme can catalyze the electrochemical reduction of CO2 to formate without the cofactor protonated nicotinamide adenine dinucleotide. The electrochemical data indicate that the enzyme-catalyzed reduction of CO2 is diffusion-controlled and is a reversible reaction. The orientation and conformation of the enzyme were investigated by surface-enhanced infrared reflection absorption spectroscopy. The α-helix of the enzyme adopts an orientation nearly parallel to the surface, bringing its active center close to the gold surface. This orientation allows direct electron transfer between CO2 and the gold electrode. The results in this paper provide a new method for the development of enzymatic electrocatalysts for CO2 reduction |
---|---|
Beschreibung: | Date Completed 06.08.2024 Date Revised 06.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01444 |