Matryoshka : Exploiting the Over-Parametrization of Deep Learning Models for Covert Data Transmission
High-quality private machine learning (ML) data stored in local data centers becomes a key competitive factor for AI corporations. In this paper, we present a novel insider attack called Matryoshka to reveal the possibility of breaking the privacy of ML data even with no exposed interface. Our attac...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 26. Juli |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |