Matryoshka : Exploiting the Over-Parametrization of Deep Learning Models for Covert Data Transmission
High-quality private machine learning (ML) data stored in local data centers becomes a key competitive factor for AI corporations. In this paper, we present a novel insider attack called Matryoshka to reveal the possibility of breaking the privacy of ML data even with no exposed interface. Our attac...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 26. Juli |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |