Adaptive Neural Message Passing for Inductive Learning on Hypergraphs

Graphs are the most ubiquitous data structures for representing relational datasets and performing inferences in them. They model, however, only pairwise relations between nodes and are not designed for encoding the higher-order relations. This drawback is mitigated by hypergraphs, in which an edge...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 26. Juli
1. Verfasser: Arya, Devanshu (VerfasserIn)
Weitere Verfasser: Gupta, Deepak K, Rudinac, Stevan, Worring, Marcel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375461221
003 DE-627
005 20240731233118.0
007 cr uuu---uuuuu
008 240727s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3434483  |2 doi 
028 5 2 |a pubmed24n1487.xml 
035 |a (DE-627)NLM375461221 
035 |a (NLM)39058615 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Arya, Devanshu  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Neural Message Passing for Inductive Learning on Hypergraphs 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Graphs are the most ubiquitous data structures for representing relational datasets and performing inferences in them. They model, however, only pairwise relations between nodes and are not designed for encoding the higher-order relations. This drawback is mitigated by hypergraphs, in which an edge can connect an arbitrary number of nodes. Most hypergraph learning approaches convert the hypergraph structure to that of a graph and then deploy existing geometric deep learning methods. This transformation leads to information loss, and sub-optimal exploitation of the hypergraph's expressive power. We present HyperMSG, a novel hypergraph learning framework that uses a modular two-level neural message passing strategy to accurately and efficiently propagate information within each hyperedge and across the hyperedges. HyperMSG adapts to the data and task by learning an attention weight associated with each node's degree centrality. Such a mechanism quantifies both local and global importance of a node, capturing the structural properties of a hypergraph. HyperMSG is inductive, allowing inference on previously unseen nodes. Further, it is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets. Finally, we demonstrate the effectiveness of HyperMSG in learning multimodal relations through detailed experimentation on a challenging multimedia dataset 
650 4 |a Journal Article 
700 1 |a Gupta, Deepak K  |e verfasserin  |4 aut 
700 1 |a Rudinac, Stevan  |e verfasserin  |4 aut 
700 1 |a Worring, Marcel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 26. Juli  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:26  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3434483  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 26  |c 07