|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM375390383 |
003 |
DE-627 |
005 |
20241101232214.0 |
007 |
cr uuu---uuuuu |
008 |
240726s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202406652
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1587.xml
|
035 |
|
|
|a (DE-627)NLM375390383
|
035 |
|
|
|a (NLM)39051516
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kwon, Jinju
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Engineered Regenerative Isolated Peripheral Nerve Interface for Targeted Reinnervation
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.11.2024
|
500 |
|
|
|a Date Revised 01.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20 µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D bioprinting
|
650 |
|
4 |
|a decellularized extracellular matrix
|
650 |
|
4 |
|a nanofiber membrane
|
650 |
|
4 |
|a regenerative peripheral nerve interface
|
650 |
|
4 |
|a reinnervation
|
650 |
|
4 |
|a tissue engineering
|
700 |
1 |
|
|a Eom, Seongsu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kong, Jeong Sik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Dong-Woo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Dong Sung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Junesun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 44 vom: 24. Nov., Seite e2406652
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:44
|g day:24
|g month:11
|g pages:e2406652
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202406652
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 44
|b 24
|c 11
|h e2406652
|