|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM375373322 |
003 |
DE-627 |
005 |
20241018232332.0 |
007 |
cr uuu---uuuuu |
008 |
240726s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405664
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1571.xml
|
035 |
|
|
|a (DE-627)NLM375373322
|
035 |
|
|
|a (NLM)39049808
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhai, Qingfeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a carbon nanomaterials
|
650 |
|
4 |
|a catalytic mechanism
|
650 |
|
4 |
|a electrocatalyst
|
650 |
|
4 |
|a environmental remediation
|
650 |
|
4 |
|a green chemistry
|
650 |
|
4 |
|a renewable energy
|
700 |
1 |
|
|a Huang, Hetaishan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lawson, Tom
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Zhenhai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Giusto, Paolo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Antonietti, Markus
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jaroniec, Mietek
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chhowalla, Manish
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Baek, Jong-Beom
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiao, Shizhang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Liming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 42 vom: 03. Okt., Seite e2405664
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:42
|g day:03
|g month:10
|g pages:e2405664
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405664
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 42
|b 03
|c 10
|h e2405664
|