Achieving Ultrasound-Excited Emission with Organic Mechanoluminescent Materials

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 25. Juli, Seite e2407875
1. Verfasser: Chang, Kai (VerfasserIn)
Weitere Verfasser: Gu, Juqing, Yuan, Likai, Guo, Jianfeng, Wu, Xiangxi, Fan, Yuanyuan, Liao, Qiuyan, Ye, Guigui, Li, Qianqian, Li, Zhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article deep penetration dipole orientation organic mechanoluminescence ultrasound‐excited near‐infrared emission ultrasound‐excited phosphorescence
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Unlike traditional photoluminescence (PL), mechanoluminescence (ML) achieved under mechanical excitation demonstrates unique characteristics such as high penetrability, spatial resolution, and signal-to-background ratio (SBR) for bioimaging applications. However, bioimaging with organic mechanoluminescent materials remains challenging because of the shallow penetration depth of ML with short emission wavelengths and the absence of a suitable mechanical force to generate ML in vivo. To resolve these issues, the present paper reports the achievement of ultrasound (US)-excited fluorescence and phosphorescence from purely organic luminogens for the first time with emission wavelengths extending to the red/NIR region, with the penetrability of the US-excited emission being considerably higher than that of PL. Consequently, US-excited subcutaneous phosphorescence imaging can be achieved using a mechanoluminescent-luminogen-based capsule device with a quantified intensity of 9.15 ± 1.32 × 104 p s-1 cm-2 sr-1 and an SBR of 24. Moreover, the US-excited emission can be adequately tuned using the packing modes of the conjugated skeletons, dipole orientation of mechanoluminescent luminogens, and strength and direction of intermolecular interactions. Overall, this study innovatively expands the kind of excitation sources and the emission wavelengths of organic mechanoluminescent materials, paving the way for practical biological applications based on US-excited emission
Beschreibung:Date Revised 25.07.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202407875