Enhancement of Corrosion and Wear Resistance of Ni-P Coatings Stems from the Synergistic Effects of Cr3C2 and Heat Treatment
This study describes the preparation of Ni-P-Cr3C2 composite coatings using pulsed electrodeposition, with varying Cr3C2 concentrations (0, 1, 2, 3, 4, and 5 g/L). Subsequently, the Ni-P-Cr3C2 composite coatings are heat-treated at different temperatures (200, 400, and 600 °C) using the characterist...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 31 vom: 06. Aug., Seite 16400-16418 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | This study describes the preparation of Ni-P-Cr3C2 composite coatings using pulsed electrodeposition, with varying Cr3C2 concentrations (0, 1, 2, 3, 4, and 5 g/L). Subsequently, the Ni-P-Cr3C2 composite coatings are heat-treated at different temperatures (200, 400, and 600 °C) using the characteristic of Cr3C2 oxidizing to Cr2O3 at high temperatures. The Ni-P coatings, Ni-P-Cr3C2 composite coatings, and heat-treated-state Ni-P-Cr3C2 composite coatings are compared and discussed. The results show that the hardness, wear resistance, and corrosion resistance of the composite coatings are optimized when the Cr3C2 content is 3 g/L and the heat-treatment temperature is 400 °C. This is due to the presence of oxides such as Cr2O3 on the surface of the composite coatings after heat treatment at 400 °C. By efficiently enhancing the coating's densification to the substrate, these oxides raise the composite coating's resistance to corrosion and wear. The Ni-P-Cr3C2 composite coating in its heat-treated makeup at 400 °C is found to have long-term corrosion resistance in the 3.5 wt % NaCl solution immersion test. This study provides a new idea in the field of corrosion |
---|---|
Beschreibung: | Date Revised 06.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01675 |