X-ray lens figure errors retrieved by deep learning from several beam intensity images

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 31(2024), Pt 5 vom: 01. Sept., Seite 1001-1009
1. Verfasser: Sanchez Del Rio, Manuel (VerfasserIn)
Weitere Verfasser: Celestre, Rafael, Reyes-Herrera, Juan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article compound refractive lens machine learning modeling neural network simulation
Beschreibung
Zusammenfassung:open access.
The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images
Beschreibung:Date Revised 05.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1600-5775
DOI:10.1107/S1600577524004958