Inductive State-Relabeling Adversarial Active Learning With Heuristic Clique Rescaling

Active learning (AL) is to design label-efficient algorithms by labeling the most representative samples. It reduces annotation cost and attracts increasing attention from the community. However, previous AL methods suffer from the inadequacy of annotations and unreliable uncertainty estimation. Mor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 23. Nov., Seite 9780-9796
1. Verfasser: Zhang, Beichen (VerfasserIn)
Weitere Verfasser: Li, Liang, Wang, Shuhui, Cai, Shaofei, Zha, Zheng-Jun, Tian, Qi, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375301119
003 DE-627
005 20241108232321.0
007 cr uuu---uuuuu
008 240724s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3432099  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM375301119 
035 |a (NLM)39042533 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Beichen  |e verfasserin  |4 aut 
245 1 0 |a Inductive State-Relabeling Adversarial Active Learning With Heuristic Clique Rescaling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Active learning (AL) is to design label-efficient algorithms by labeling the most representative samples. It reduces annotation cost and attracts increasing attention from the community. However, previous AL methods suffer from the inadequacy of annotations and unreliable uncertainty estimation. Moreover, we find that they ignore the intra-diversity of selected samples, which leads to sampling redundancy. In view of these challenges, we propose an inductive state-relabeling adversarial AL model (ISRA) that consists of a unified representation generator, an inductive state-relabeling discriminator, and a heuristic clique rescaling module. The generator introduces contrastive learning to leverage unlabeled samples for self-supervised training, where the mutual information is utilized to improve the representation quality for AL selection. Then, we design an inductive uncertainty indicator to learn the state score from labeled data and relabel unlabeled data with different importance for better discrimination of instructive samples. To solve the problem of sampling redundancy, the heuristic clique rescaling module measures the intra-diversity of candidate samples and recurrently rescales them to select the most informative samples. The experiments conducted on eight datasets and two imbalanced scenarios show that our model outperforms the previous state-of-the-art AL methods. As an extension on the cross-modal AL task, we apply ISRA to the image captioning and it also achieves superior performance 
650 4 |a Journal Article 
700 1 |a Li, Liang  |e verfasserin  |4 aut 
700 1 |a Wang, Shuhui  |e verfasserin  |4 aut 
700 1 |a Cai, Shaofei  |e verfasserin  |4 aut 
700 1 |a Zha, Zheng-Jun  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 23. Nov., Seite 9780-9796  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:23  |g month:11  |g pages:9780-9796 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3432099  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 23  |c 11  |h 9780-9796