Scalable Fabrication of Large-Scale, 3D, and Stretchable Circuits
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 05. Sept., Seite e2402221 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article copper‐clad elastomer large‐scale circuits multilayer circuits stretchable circuits stretchable devices |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Stretchable electronics have demonstrated excellent potential in wearable healthcare and conformal integration. Achieving the scalable fabrication of stretchable devices with high functional density is the cornerstone to enable the practical applications of stretchable electronics. Here, a comprehensive methodology for realizing large-scale, 3D, and stretchable circuits (3D-LSC) is reported. The soft copper-clad laminate (S-CCL) based on the "cast and cure" process facilitates patterning the planar interconnects with the scale beyond 1 m. With the ability to form through, buried and blind VIAs in the multilayer stack of S-CCLs, high functional density can be achieved by further creating vertical interconnects in stacked S-CCLs. The application of temporary bonding substrate effectively minimizes the misalignments caused by residual strain and thermal strain. 3D-LSC enables the batch production of stretchable skin patches based on five-layer stretchable circuits, which can serve as a miniaturized system for physiological signals monitoring with wireless power delivery. The fabrications of conformal antenna and stretchable light-emitting diode display further illustrate the potential of 3D-LSC in realizing large-scale stretchable devices |
---|---|
Beschreibung: | Date Revised 18.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202402221 |