A stemless anatomic shoulder arthroplasty design provides increased cortical medial calcar bone loading in variable bone densities compared to a short stem implant

© 2024 The Authors.

Bibliographische Detailangaben
Veröffentlicht in:JSES international. - 2020. - 8(2024), 4 vom: 04. Juli, Seite 851-858
1. Verfasser: Ritter, Daniel (VerfasserIn)
Weitere Verfasser: Denard, Patrick J, Raiss, Patric, Wijdicks, Coen A, Bachmaier, Samuel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:JSES international
Schlagworte:Journal Article Biomechanics Bone density Cortical rim support Humeral implant micromotion Medial calcar bone loading Stemless TSA
LEADER 01000caa a22002652 4500
001 NLM375232745
003 DE-627
005 20240723233636.0
007 cr uuu---uuuuu
008 240722s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jseint.2024.02.008  |2 doi 
028 5 2 |a pubmed24n1479.xml 
035 |a (DE-627)NLM375232745 
035 |a (NLM)39035663 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ritter, Daniel  |e verfasserin  |4 aut 
245 1 2 |a A stemless anatomic shoulder arthroplasty design provides increased cortical medial calcar bone loading in variable bone densities compared to a short stem implant 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.07.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. 
520 |a Background: Several studies have reported proximal bone resorption in stemless and press-fit short-stem humeral implants for anatomic total shoulder arthroplasty. The purpose of this biomechanical study was to evaluate implant and cortical bone micromotion of a cortical rim-supported stemless implant compared to a press-fit short stem implant during cyclic loading and static compression testing 
520 |a Methods: Thirty cadaveric humeri were assigned to 3 groups based on a previously performed density analysis, adopting the metaphyseal and epiphyseal and inferior supporting bone densities for multivariate analyses. Implant fixation was performed in stemless implant in low bone density (SL-L, n = 10) or short stem implant in low bone density (Stem-L, n = 10) and in stemless implant in high bone density (SL-H, n = 10). Cyclic loading with 220 N, 520 N, and 820 N over 1000 cycles at 1.5 Hz was performed with a constant valley load of 25 N. Optical recording allowed for spatial implant tracking and quantification of cortical bone deformations in the medial calcar bone region. Implant micromotion was measured as rotational and translational displacement. Load-to-failure testing was performed at a rate of 1.5 mm/s with ultimate load and stiffness measured 
520 |a Results: The SL-H group demonstrated significantly reduced implant micromotion compared to both low-density groups (SL-L: P = .014; Stem-L: P = .031). The Stem-L group showed significantly reduced rotational motion and variance in the test results at the 820-N load level compared to the SL-L group (equal variance: P = .012). Implant micromotion and reversible bone deformation were significantly affected by increasing load (P < .001), metaphyseal cancellous (P = .023, P = .013), and inferior supporting bone density (P = .016, P = .023). Absolute cortical bone deformation was significantly increased with stemless implants in lower densities and percentage reversible bone deformation was significantly higher for the SL-H group (21 ± 7%) compared to the Stem-L group (12 ± 6%, P = .017) 
520 |a Conclusion: A cortical rim-supported stemless implant maintained proximally improved dynamic bone loading in variable bone densities compared to a press-fit short stem implant. Biomechanical time-zero implant micromotion in lower bone densities was comparable between short stem and stemless implants at rehabilitation load levels (220 N, 520 N), but with higher cyclic stability and reduced variability for stemmed implantation at daily peak loads (820 N) 
650 4 |a Journal Article 
650 4 |a Biomechanics 
650 4 |a Bone density 
650 4 |a Cortical rim support 
650 4 |a Humeral implant micromotion 
650 4 |a Medial calcar bone loading 
650 4 |a Stemless TSA 
700 1 |a Denard, Patrick J  |e verfasserin  |4 aut 
700 1 |a Raiss, Patric  |e verfasserin  |4 aut 
700 1 |a Wijdicks, Coen A  |e verfasserin  |4 aut 
700 1 |a Bachmaier, Samuel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t JSES international  |d 2020  |g 8(2024), 4 vom: 04. Juli, Seite 851-858  |w (DE-627)NLM307818438  |x 2666-6383  |7 nnns 
773 1 8 |g volume:8  |g year:2024  |g number:4  |g day:04  |g month:07  |g pages:851-858 
856 4 0 |u http://dx.doi.org/10.1016/j.jseint.2024.02.008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_50 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 2024  |e 4  |b 04  |c 07  |h 851-858