|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM375184546 |
003 |
DE-627 |
005 |
20240918232454.0 |
007 |
cr uuu---uuuuu |
008 |
240721s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202403904
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1538.xml
|
035 |
|
|
|a (DE-627)NLM375184546
|
035 |
|
|
|a (NLM)39030848
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jang, Yoon Ho
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Memristive Crossbar Array-Based Probabilistic Graph Modeling
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 18.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Modern graph datasets with structural complexity and uncertainties due to incomplete information or data variability require advanced modeling techniques beyond conventional graph models. This study introduces a memristive crossbar array (CBA)-based probabilistic graph model (C-PGM) utilizing Cu0.3Te0.7/HfO2/Pt memristors, which exhibit probabilistic switching, self-rectifying, and memory characteristics. C-PGM addresses the complexities and uncertainties inherent in structural graph data across various domains, leveraging the probabilistic nature of memristors. C-PGM relies on the device-to-device variation across multiple memristive CBAs, overcoming the limitations of previous approaches that rely on sequential operations, which are slower and have a reliability concern due to repeated switching. This new approach enables the fast processing and massive implementation of probabilistic units at the expense of chip area. In this study, the hardware-based C-PGM feasibly expresses small-scale probabilistic graphs and shows minimal error in aggregate probability calculations. The probability calculation capabilities of C-PGM are applied to steady-state estimation and the PageRank algorithm, which is implemented on a simulated large-scale C-PGM. The C-PGM-based steady-state estimation and PageRank algorithm demonstrate comparable accuracy to conventional methods while significantly reducing computational costs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a crossbar array (CBA)
|
650 |
|
4 |
|a eigenvector decomposition
|
650 |
|
4 |
|a probabilistic graph modeling
|
650 |
|
4 |
|a self‐rectifying memristor
|
650 |
|
4 |
|a steady‐state estimation
|
700 |
1 |
|
|a Lee, Soo Hyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Janguk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheong, Sunwoo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shim, Sung Keun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Joon-Kyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ryoo, Seung Kyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hwang, Cheol Seong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 36 vom: 20. Sept., Seite e2403904
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:36
|g day:20
|g month:09
|g pages:e2403904
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202403904
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 36
|b 20
|c 09
|h e2403904
|