Minimizing Interfacial Energy Loss and Volatilization of Formamidinium via Polymer-Assisted D-A supramolecular Self-Assembly Interface for Inverted Perovskite Solar Cells with 25.78% Efficiency

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 23. Sept., Seite e2404797
Auteur principal: Tian, Congcong (Auteur)
Autres auteurs: Sun, Anxin, Zhuang, Rongshan, Zheng, Yiting, Wu, Xueyun, Ouyang, Beilin, Du, Jiajun, Li, Ziyi, Wu, Xiling, Chen, Jinling, Cai, Jingyu, Hua, Yong, Chen, Chun-Chao
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article D–A supramolecular interface conduction band offset inverted perovskite solar cells nonradiative recombination loss thermalization loss
LEADER 01000caa a22002652c 4500
001 NLM375183825
003 DE-627
005 20250306103846.0
007 cr uuu---uuuuu
008 240721s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202404797  |2 doi 
028 5 2 |a pubmed25n1249.xml 
035 |a (DE-627)NLM375183825 
035 |a (NLM)39030758 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Congcong  |e verfasserin  |4 aut 
245 1 0 |a Minimizing Interfacial Energy Loss and Volatilization of Formamidinium via Polymer-Assisted D-A supramolecular Self-Assembly Interface for Inverted Perovskite Solar Cells with 25.78% Efficiency 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a 2D perovskite passivation strategies effectively reduce defect-assisted carrier nonradiative recombination losses on the perovskite surface. Nonetheless, severe energy losses are causing by carrier thermalization, interfacial nonradiative recombination, and conduction band offset still persist at heterojunction perovskite/PCBM interfaces, which limits further performance enhancement of inverted heterojunction PSCs. Here, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (5FTPP) is introduced between 3D/2D perovskite heterojunction and PCBM. Compared to tetraphenylporphyrin without electron-withdrawing fluoro-substituents, 5FTPP can self-assemble with PCBM at interface into donor-acceptor (D-A) complex with stronger supramolecular interaction and lower energy transfer losses. This rapid energy transfer from donor (5FTPP) to acceptor (PCBM) within femtosecond scale is demonstrated to enlarge hot carrier extraction rates and ranges, reducing thermalization losses. Furthermore, the incorporation of polystyrene derivative (PD) reinforces D-A interaction by inhibiting self-π-π stacking of 5FTPP, while fine-tuning conduction band offset and suppressing interfacial nonradiative recombination via Schottky barrier, dipole, and n-doping. Notably, the multidentate anchoring of PD-5FTPP with FA+, Pb2+, and I- mitigates the adverse effects of FA+ volatilization during thermal stress. Ultimately, devices with PD-5FTPP achieve a power conversion efficiency of 25.78% (certified: 25.36%), maintaining over 90% of initial efficiency after 1000 h of continuous illumination at the maximum power point (65 °C) under ISOS-L-2 protocol 
650 4 |a Journal Article 
650 4 |a D–A supramolecular interface 
650 4 |a conduction band offset 
650 4 |a inverted perovskite solar cells 
650 4 |a nonradiative recombination loss 
650 4 |a thermalization loss 
700 1 |a Sun, Anxin  |e verfasserin  |4 aut 
700 1 |a Zhuang, Rongshan  |e verfasserin  |4 aut 
700 1 |a Zheng, Yiting  |e verfasserin  |4 aut 
700 1 |a Wu, Xueyun  |e verfasserin  |4 aut 
700 1 |a Ouyang, Beilin  |e verfasserin  |4 aut 
700 1 |a Du, Jiajun  |e verfasserin  |4 aut 
700 1 |a Li, Ziyi  |e verfasserin  |4 aut 
700 1 |a Wu, Xiling  |e verfasserin  |4 aut 
700 1 |a Chen, Jinling  |e verfasserin  |4 aut 
700 1 |a Cai, Jingyu  |e verfasserin  |4 aut 
700 1 |a Hua, Yong  |e verfasserin  |4 aut 
700 1 |a Chen, Chun-Chao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 36 vom: 23. Sept., Seite e2404797  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:36  |g day:23  |g month:09  |g pages:e2404797 
856 4 0 |u http://dx.doi.org/10.1002/adma.202404797  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 36  |b 23  |c 09  |h e2404797