Exploring Multi-Modal Spatial-Temporal Contexts for High-Performance RGB-T Tracking

In RGB-T tracking, there exist rich spatial relationships between the target and backgrounds within multi-modal data as well as sound consistencies of spatial relationships among successive frames, which are crucial for boosting the tracking performance. However, most existing RGB-T trackers overloo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 19., Seite 4303-4318
1. Verfasser: Zhang, Tianlu (VerfasserIn)
Weitere Verfasser: Jiao, Qiang, Zhang, Qiang, Han, Jungong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In RGB-T tracking, there exist rich spatial relationships between the target and backgrounds within multi-modal data as well as sound consistencies of spatial relationships among successive frames, which are crucial for boosting the tracking performance. However, most existing RGB-T trackers overlook such multi-modal spatial relationships and temporal consistencies within RGB-T videos, hindering them from robust tracking and practical applications in complex scenarios. In this paper, we propose a novel Multi-modal Spatial-Temporal Context (MMSTC) network for RGB-T tracking, which employs a Transformer architecture for the construction of reliable multi-modal spatial context information and the effective propagation of temporal context information. Specifically, a Multi-modal Transformer Encoder (MMTE) is designed to achieve the encoding of reliable multi-modal spatial contexts as well as the fusion of multi-modal features. Furthermore, a Quality-aware Transformer Decoder (QATD) is proposed to effectively propagate the tracking cues from historical frames to the current frame, which facilitates the object searching process. Moreover, the proposed MMSTC network can be easily extended to various tracking frameworks. New state-of-the-art results on five prevalent RGB-T tracking benchmarks demonstrate the superiorities of our proposed trackers over existing ones
Beschreibung:Date Revised 31.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3428316