Graphitic Carbon Nitride Enters the Scene : A Promising Versatile Tool for Biomedical Applications

Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2024) vom: 18. Juli
1. Verfasser: Xu, Xuan (VerfasserIn)
Weitere Verfasser: Zhang, Xinyuan, He, Haodong, Dai, Lin, Hu, Jinguang, Si, Chuanling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Review
Beschreibung
Zusammenfassung:Graphitic carbon nitride (g-C3N4), since the pioneering work on visible-light photocatalytic water splitting in 2009, has emerged as a highly promising advanced material for environmental and energetic applications, including photocatalytic degradation of pollutants, photocatalytic hydrogen generation, and carbon dioxide reduction. Due to its distinctive two-dimensional structure, excellent chemical stability, and distinctive optical and electrical properties, g-C3N4 has garnered a considerable amount of interest in the field of biomedicine in recent years. This review focuses on the fundamental properties of g-C3N4, highlighting the synthesis and modification strategies associated with the interfacial structures of g-C3N4-based materials, including heterojunction, band gap engineering, doping, and nanocomposite hybridization. Furthermore, the biomedical applications of these materials in various domains, including biosensors, antimicrobial applications, and photocatalytic degradation of medical pollutants, are also described with the objective of spotlighting the unique advantages of g-C3N4. A summary of the challenges faced and future prospects for the advancement of g-C3N4-based materials is presented, and it is hoped that this review will inspire readers to seek further new applications for this material in biomedical and other fields
Beschreibung:Date Revised 18.07.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c01714