In situ Blending For Co-Deposition of Electron Transport and Perovskite Layers Enables Over 24% Efficiency Stable Conventional Solar Cells

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 18. Sept., Seite e2407349
1. Verfasser: Wang, Wanhai (VerfasserIn)
Weitere Verfasser: Li, Xiaofeng, Huang, Pengyu, Yang, Li, Gao, Liang, Jiang, Yonghe, Hu, Jianfei, Gao, Yinhu, Che, Yuliang, Deng, Jidong, Zhang, Jinbao, Tang, Weihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article co‐deposition electron transport layer in situ blending perovskite solar cell
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Simplifying the manufacturing processes of multilayered high-performance perovskite solar cells (PSCs) is yet of vital importance for their cost-effective production. Herein, an in situ blending strategy is presented for co-deposition of electron transport layer (ETL) and perovskite absorber by incorporating (3-(7-butyl-1,3,6,8-tetraoxo-3,6,7,8-tetrahydrobenzo- [lmn][3,8]phenanthrolin-2(1H)-yl)propyl)phosphonic acid (NDP) into the perovskite precursor solutions. The phosphonic acid-like anchoring group coupled with its large molecular size drives the migration of NDP toward indium tin oxide (ITO) surface to form a distinct ETL during perovskite film forming. This strategy circumvents the critical wetting issue and simultaneously improves the interfacial charge collection efficiencies. Consequently, n-i-p PSCs based on in situ blended NDP achieve a champion power conversion efficiency (PCE) of 24.01%, which is one of the highest values for PSCs using organic ETLs. This performance is notably higher than that of ETL-free (21.19%) and independently spin-coated (21.42%) counterparts. More encouragingly, the in situ blending strategy dramatically enhances the device stability under harsh conditions by retaining over 90% of initial efficiencies after 250 h in 100 °C or 65% humidity storage. Moreover, this strategy is universally adaptable to various perovskite compositions, device architectures, and electron transport materials (ETMs), showing great potential for applications in diverse optoelectronic devices
Beschreibung:Date Revised 18.09.2024
published: Print-Electronic
ErratumIn: Adv Mater. 2024 Sep;36(36):e2411637. doi: 10.1002/adma.202411637. - PMID 39189531
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202407349