Attention-Guided Low-Rank Tensor Completion

Low-rank tensor completion (LRTC) aims to recover missing data of high-dimensional structures from a limited set of observed entries. Despite recent significant successes, the original structures of data tensors are still not effectively preserved in LRTC algorithms, yielding less accurate restorati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 9818-9833
1. Verfasser: Mai, Truong Thanh Nhat (VerfasserIn)
Weitere Verfasser: Lam, Edmund Y, Lee, Chul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375058389
003 DE-627
005 20241108232313.0
007 cr uuu---uuuuu
008 240718s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3429498  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM375058389 
035 |a (NLM)39018212 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mai, Truong Thanh Nhat  |e verfasserin  |4 aut 
245 1 0 |a Attention-Guided Low-Rank Tensor Completion 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-rank tensor completion (LRTC) aims to recover missing data of high-dimensional structures from a limited set of observed entries. Despite recent significant successes, the original structures of data tensors are still not effectively preserved in LRTC algorithms, yielding less accurate restoration results. Moreover, LRTC algorithms often incur high computational costs, which hinder their applicability. In this work, we propose an attention-guided low-rank tensor completion (AGTC) algorithm, which can faithfully restore the original structures of data tensors using deep unfolding attention-guided tensor factorization. First, we formulate the LRTC task as a robust factorization problem based on low-rank and sparse error assumptions. Low-rank tensor recovery is guided by an attention mechanism to better preserve the structures of the original data. We also develop implicit regularizers to compensate for modeling inaccuracies. Then, we solve the optimization problem by employing an iterative technique. Finally, we design a multistage deep network by unfolding the iterative algorithm, where each stage corresponds to an iteration of the algorithm; at each stage, the optimization variables and regularizers are updated by closed-form solutions and learned deep networks, respectively. Experimental results for high dynamic range imaging and hyperspectral image restoration show that the proposed algorithm outperforms state-of-the-art algorithms 
650 4 |a Journal Article 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
700 1 |a Lee, Chul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Nov., Seite 9818-9833  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:11  |g pages:9818-9833 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3429498  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 11  |h 9818-9833