Surface Reconstruction From Point Clouds : A Survey and a Benchmark

Reconstruction of a continuous surface of two-dimensional manifold from its raw, discrete point cloud observation is a long-standing problem in computer vision and graphics research. The problem is technically ill-posed, and becomes more difficult considering that various sensing imperfections would...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 06. Nov., Seite 9727-9748
1. Verfasser: Huang, ZhangJin (VerfasserIn)
Weitere Verfasser: Wen, Yuxin, Wang, ZiHao, Ren, Jinjuan, Jia, Kui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM375004742
003 DE-627
005 20241108232311.0
007 cr uuu---uuuuu
008 240717s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3429209  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM375004742 
035 |a (NLM)39012756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, ZhangJin  |e verfasserin  |4 aut 
245 1 0 |a Surface Reconstruction From Point Clouds  |b A Survey and a Benchmark 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Reconstruction of a continuous surface of two-dimensional manifold from its raw, discrete point cloud observation is a long-standing problem in computer vision and graphics research. The problem is technically ill-posed, and becomes more difficult considering that various sensing imperfections would appear in the point clouds obtained by practical depth scanning. In literature, a rich set of methods has been proposed, and reviews of existing methods are also provided. However, existing reviews are short of thorough investigations on a common benchmark. The present paper aims to review and benchmark existing methods in the new era of deep learning surface reconstruction. To this end, we contribute a large-scale benchmarking dataset consisting of both synthetic and real-scanned data; the benchmark includes object- and scene-level surfaces and takes into account various sensing imperfections that are commonly encountered in practical depth scanning. We conduct thorough empirical studies by comparing existing methods on the constructed benchmark, and pay special attention on robustness of existing methods against various scanning imperfections; we also study how different methods generalize in terms of reconstructing complex surface shapes. Our studies help identity the best conditions under which different methods work, and suggest some empirical findings. For example, while deep learning methods are increasingly popular in the research community, our systematic studies suggest that, surprisingly, a few classical methods perform even better in terms of both robustness and generalization; our studies also suggest that the practical challenges of misalignment of point sets from multi-view scanning, missing of surface points, and point outliers remain unsolved by all the existing surface reconstruction methods. We expect that the benchmark and our studies would be valuable both for practitioners and as a guidance for new innovations in future research 
650 4 |a Journal Article 
700 1 |a Wen, Yuxin  |e verfasserin  |4 aut 
700 1 |a Wang, ZiHao  |e verfasserin  |4 aut 
700 1 |a Ren, Jinjuan  |e verfasserin  |4 aut 
700 1 |a Jia, Kui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 06. Nov., Seite 9727-9748  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:06  |g month:11  |g pages:9727-9748 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3429209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 06  |c 11  |h 9727-9748