Human-Centric Transformer for Domain Adaptive Action Recognition

We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit huma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 16. Juli
1. Verfasser: Lin, Kun-Yu (VerfasserIn)
Weitere Verfasser: Zhou, Jiaming, Zheng, Wei-Shi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM37500470X
003 DE-627
005 20240717233359.0
007 cr uuu---uuuuu
008 240717s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3429387  |2 doi 
028 5 2 |a pubmed24n1473.xml 
035 |a (DE-627)NLM37500470X 
035 |a (NLM)39012755 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Kun-Yu  |e verfasserin  |4 aut 
245 1 0 |a Human-Centric Transformer for Domain Adaptive Action Recognition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer 
650 4 |a Journal Article 
700 1 |a Zhou, Jiaming  |e verfasserin  |4 aut 
700 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 16. Juli  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:16  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3429387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 16  |c 07