Controlled Migration of Lithium Cations by Diamine Bridges in Water-Processable Polymer-Based Solid-State Electrolyte Memory Layers for Organic Synaptic Transistors

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 36 vom: 01. Sept., Seite e2403645
1. Verfasser: Lee, Woongki (VerfasserIn)
Weitere Verfasser: Kim, Taehoon, Kim, Hwajeong, Kim, Youngkyoo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article controlled ion migration molecular bridge neuromorphic organic synaptic transistor solid‐state electrolyte
LEADER 01000caa a22002652 4500
001 NLM374995044
003 DE-627
005 20240918232445.0
007 cr uuu---uuuuu
008 240716s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202403645  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM374995044 
035 |a (NLM)39011779 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Woongki  |e verfasserin  |4 aut 
245 1 0 |a Controlled Migration of Lithium Cations by Diamine Bridges in Water-Processable Polymer-Based Solid-State Electrolyte Memory Layers for Organic Synaptic Transistors 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Synaptic transistors require sufficient retention (memory) performances of current signals to exactly mimic biological synapses. Ion migration has been proposed to achieve high retention characteristics but less attention has been paid to polymer-based solid-state electrolytes (SSEs) for organic synaptic transistors (OSTRs). Here, OSTRs with water-processable polymer-based SSEs, featuring ion migration-controllable molecular bridges, which are prepared by reactions of poly(4-styrenesulfonic acid) (PSSA), diethylenetriamine (DETA), and lithium hydroxide (LiOH) are demonstrated. The ion conductivity of PSSA:LiOH:DETA (1:0.4:X, PLiD) films is remarkably changed by the molar ratio (X) of DETA, which is attributed to the extended distances between the PSSA chains by the DETA bridges. The devices with the PLiD layers deliver noticeably changed hysteresis reaching an optimum at X = 0.2, leading to the longest retention of current signals upon single/double pulses. The long-term potentiation test confirms that the present OSTRs can gradually build up the postsynaptic current by gate pulses of -2 V, while the long-term depression can be adjusted by varying the depression gate pulses (≈0.2-1.2 V). The artificial neural network simulations disclose that the present OSTRs with the ion migration-controlled PLiD layers can perform synaptic processes with an accuracy of ≈96% 
650 4 |a Journal Article 
650 4 |a controlled ion migration 
650 4 |a molecular bridge 
650 4 |a neuromorphic 
650 4 |a organic synaptic transistor 
650 4 |a solid‐state electrolyte 
700 1 |a Kim, Taehoon  |e verfasserin  |4 aut 
700 1 |a Kim, Hwajeong  |e verfasserin  |4 aut 
700 1 |a Kim, Youngkyoo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 36 vom: 01. Sept., Seite e2403645  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:36  |g day:01  |g month:09  |g pages:e2403645 
856 4 0 |u http://dx.doi.org/10.1002/adma.202403645  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 36  |b 01  |c 09  |h e2403645