Versatile Curve Design by Level Set with Quadratic Convergence

Many 3D mesh processing tasks revolve around generating and manipulating curves on surface meshes. While it is intuitive to explicitly model these curves using mesh edges or parametric curves in the ambient space, these methods often suffer from numerical instability or inaccuracy due to the project...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 15. Juli
Auteur principal: Zhang, Xiaohu (Auteur)
Autres auteurs: Wu, Shuang, Chen, Jiong, Jin, Yao, Bao, Hujun, Huang, Jin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM374961220
003 DE-627
005 20250306101258.0
007 cr uuu---uuuuu
008 240716s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3427365  |2 doi 
028 5 2 |a pubmed25n1249.xml 
035 |a (DE-627)NLM374961220 
035 |a (NLM)39008393 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaohu  |e verfasserin  |4 aut 
245 1 0 |a Versatile Curve Design by Level Set with Quadratic Convergence 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Many 3D mesh processing tasks revolve around generating and manipulating curves on surface meshes. While it is intuitive to explicitly model these curves using mesh edges or parametric curves in the ambient space, these methods often suffer from numerical instability or inaccuracy due to the projection operation. Another natural strategy is to adapt spline based tools, these methods are quite fast but are hard to be extended to more versatile constraints and need heavy manual interactions. In this paper, we present an efficient and versatile approach to curve design based on an implicit representation known as the level set. While previous works have explored the use of the level set to generate curves with minimal length, they typically have limitations in accommodating additional conditions for rich and robust control. To address these challenges, we formulate curve editing with constraints like smoothness, interpolation, tangent control, etc., via a level set based variational problem by constraining the values or derivatives of the level set function. However, the widely used gradient flow strategy converges very slowly for this complicated variational problem compared to the classical geodesic one. Thus, we propose to solve it via Newton's method enhanced by local Hessian correction and a trust-region strategy. As a result, our method not only enables versatile control, but also excels in terms of performance due to nearly quadratic convergence and almost linear complexity in each iteration via narrow band acceleration. In practice, these advantages effectively benefit various applications, such as interactive curve manipulation, boundary smoothing for surface segmentation and path planning with obstacles as demonstrated 
650 4 |a Journal Article 
700 1 |a Wu, Shuang  |e verfasserin  |4 aut 
700 1 |a Chen, Jiong  |e verfasserin  |4 aut 
700 1 |a Jin, Yao  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
700 1 |a Huang, Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 15. Juli  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:15  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3427365  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 15  |c 07