Unsupervised Domain Adaptation via Domain-Adaptive Diffusion

Unsupervised Domain Adaptation (UDA) is quite challenging due to the large distribution discrepancy between the source domain and the target domain. Inspired by diffusion models which have strong capability to gradually convert data distributions across a large gap, we consider to explore the diffus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 23., Seite 4245-4260
1. Verfasser: Peng, Duo (VerfasserIn)
Weitere Verfasser: Ke, Qiuhong, Ambikapathi, ArulMurugan, Yazici, Yasin, Lei, Yinjie, Liu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374961166
003 DE-627
005 20240723233455.0
007 cr uuu---uuuuu
008 240716s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3424985  |2 doi 
028 5 2 |a pubmed24n1479.xml 
035 |a (DE-627)NLM374961166 
035 |a (NLM)39008383 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Duo  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Domain Adaptation via Domain-Adaptive Diffusion 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised Domain Adaptation (UDA) is quite challenging due to the large distribution discrepancy between the source domain and the target domain. Inspired by diffusion models which have strong capability to gradually convert data distributions across a large gap, we consider to explore the diffusion technique to handle the challenging UDA task. However, using diffusion models to convert data distribution across different domains is a non-trivial problem as the standard diffusion models generally perform conversion from the Gaussian distribution instead of from a specific domain distribution. Besides, during the conversion, the semantics of the source-domain data needs to be preserved to classify correctly in the target domain. To tackle these problems, we propose a novel Domain-Adaptive Diffusion (DAD) module accompanied by a Mutual Learning Strategy (MLS), which can gradually convert data distribution from the source domain to the target domain while enabling the classification model to learn along the domain transition process. Consequently, our method successfully eases the challenge of UDA by decomposing the large domain gap into small ones and gradually enhancing the capacity of classification model to finally adapt to the target domain. Our method outperforms the current state-of-the-arts by a large margin on three widely used UDA datasets 
650 4 |a Journal Article 
700 1 |a Ke, Qiuhong  |e verfasserin  |4 aut 
700 1 |a Ambikapathi, ArulMurugan  |e verfasserin  |4 aut 
700 1 |a Yazici, Yasin  |e verfasserin  |4 aut 
700 1 |a Lei, Yinjie  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 23., Seite 4245-4260  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:23  |g pages:4245-4260 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3424985  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 23  |h 4245-4260