Enhanced removal of 1,2-dichloroethane by nanoscale calcium peroxide activation with Fe(III) coupled with different iron sulfides

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 90(2024), 1 vom: 13. Juli, Seite 384-397
1. Verfasser: Zhao, Xuanran (VerfasserIn)
Weitere Verfasser: Xu, Yuanze, Zhu, Xueqiang, Cao, Enwei, Wang, Wei, Lyu, Shuguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article 1 2-dichloroethane groundwater remediation iron sulfides nanoscale calcium peroxide sulfur species Ethylene Dichlorides ethylene dichloride 55163IJI47 mehr... calcium peroxide 7FRO2ENO91 Peroxides Sulfides Iron E1UOL152H7 Water Pollutants, Chemical Ferric Compounds ferrous sulfide TH5J4TUX6S Ferrous Compounds
Beschreibung
Zusammenfassung:© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
Fe(II) is of great importance in iron-based advanced oxidation processes. However, traditional methods to maintain Fe(II) concentration, such as the addition of chelating agents or reducing agents, may lead to an increase in chemical oxygen demand of secondary pollution. Therefore, in this study, iron sulfides, namely ferrous sulfide (FeS), pyrite (FeS2), and sulfidated nanoscale zero-valent iron (S-nZVI), were applied for not only the regeneration of Fe(II) but also the direct dissolution of Fe(II). Nanoscale calcium peroxide (nCaO2) was synthesized and used as the oxidant. The removal of 1,2-dichloroethane (1,2-DCA) were significantly promoted from 8.8 to 98.2, 79.2, and 80.8% with the aid of FeS, FeS2, and S-nZVI within 180 min, respectively. The dominant reactive oxygen species were demonstrated and their steady-state concentrations were quantified. Besides, the dechlorination of 1,2-DCA reached 90.4, 69.5, and 83.9% in nCaO2/Fe(III) systems coupled with FeS, FeS2, and S-nZVI, respectively. All three systems had high tolerance to the complex water conditions, of which FeS-enhanced nCaO2/Fe(III) system displayed the best performance, which could be recommended to put into practice for the remediation of 1,2-DCA contaminated groundwater
Beschreibung:Date Completed 15.07.2024
Date Revised 15.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2024.220