|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM374913404 |
003 |
DE-627 |
005 |
20240829232950.0 |
007 |
cr uuu---uuuuu |
008 |
240714s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202403088
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1516.xml
|
035 |
|
|
|a (DE-627)NLM374913404
|
035 |
|
|
|a (NLM)39003616
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yu, Dehai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Volume-Metallization 3D-Printed Polymer Composites
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 28.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a 3D printing polymer or metal can achieve complicated structures while lacking multifunctional performance. Combined printing of polymer and metal is desirable and challenging due to their insurmountable mismatch in melting-point temperatures. Here, a novel volume-metallization 3D-printed polymer composite (VMPC) with bicontinuous phases for enabling coupled structure and function, which are prepared by infilling low-melting-point metal (LM) to controllable porous configuration is reported. Based on vacuum-assisted low-pressure conditions, LM is guided by atmospheric pressure action and overcomes surface tension to spread along the printed polymer pore channel, enabling the complete filling saturation of porous structures for enhanced tensile strength (up to 35.41 MPa), thermal (up to 25.29 Wm-1K-1) and electrical (>106 S m-1) conductivities. The designed 3D-printed microstructure-oriented can achieve synergistic anisotropy in mechanics (1.67), thermal (27.2), and electrical (>1012) conductivities. VMPC multifunction is demonstrated, including customized 3D electronics with elevated strength, electromagnetic wave-guided transport and signal amplification, heat dissipation device for chip temperature control, and storage components for thermoelectric generator energy conversion with light-heat-electricity
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D electronics
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a anisotropy
|
650 |
|
4 |
|a multifunctional
|
650 |
|
4 |
|a thermal management
|
700 |
1 |
|
|a Chi, Guidong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Maolin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhonghao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xing, Chunxiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Daiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Quan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chunwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Zhongshan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Du
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Zhenghe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Zhizhu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 35 vom: 13. Aug., Seite e2403088
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:35
|g day:13
|g month:08
|g pages:e2403088
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202403088
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 35
|b 13
|c 08
|h e2403088
|