Potential role of ice-binding protein in mitochondria-lipid and ATP mechanisms during freezing of plant callus

Copyright © 2024. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 214(2024) vom: 12. Aug., Seite 108866
1. Verfasser: Kim, Euihyun (VerfasserIn)
Weitere Verfasser: Kwon, Gi-Sok, Choi, Sunmee, Kim, Soo-Yun, Heo, Kyeong Yeon, Kim, Young Soon, Kim, Cha Young, Kim, Soyoung, Jeong, Jae Cheol, Hwang, Jisub, Lee, Jun Hyuck, Lee, Jeong Hun, Moh, Sang Hyun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Cryopreservation Extracellular matrix Ice-binding protein Mitochondrial function Plant callus Adenosine Triphosphate 8L70Q75FXE Fungal Proteins Reactive Oxygen Species
LEADER 01000caa a22002652 4500
001 NLM374900418
003 DE-627
005 20240807232923.0
007 cr uuu---uuuuu
008 240714s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2024.108866  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM374900418 
035 |a (NLM)39002307 
035 |a (PII)S0981-9428(24)00534-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Euihyun  |e verfasserin  |4 aut 
245 1 0 |a Potential role of ice-binding protein in mitochondria-lipid and ATP mechanisms during freezing of plant callus 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.08.2024 
500 |a Date Revised 06.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2024. Published by Elsevier Masson SAS. 
520 |a Plant calli, a perpetually undifferentiated cell culture, have defects in maintaining their genetic fidelity during prolonged tissue culture. Cryopreservation using ice-binding proteins (IBP) is a potential solution. Despite a few studies on cryopreservation using IBPs in plant calli, detailed insights into the intracellular metabolism during freezing, thawing, and re-induction remain sparse. This study investigated and employed IBP from polar yeast Leucosporidium sp. (LeIBP) in the cryopreservation process across diverse taxa, including gymnosperms, monocots, dicots, and woody plants. Molecular-level analyses encompassing reactive oxygen species levels, mitochondrial function, and ATP and lipophilic compounds content were conducted. The results across nine plant species revealed the effects of LeIBP on callus competency post-thawing, along with enhanced survival rates, reactive oxygen species reduction, and restored metabolic activities to the level of those of fresh calli. Moreover, species-specific survival optimization with LeIBP treatments and morphological assessments revealed intriguing extracellular matrix structural changes post-cryopreservation, suggesting a morphological strategy for maintaining the original cellular states and paracrine signaling. This study pioneered the comprehensive application of LeIBP in plant callus cryopreservation, alleviating cellular stress and enhancing competence. Therefore, our findings provide new insights into the identification of optimal LeIBP concentrations, confirmation of genetic conformity post-thawing, and the intracellular metabolic mechanisms of cryopreservation advancements in plant research, thereby addressing the challenges associated with long-term preservation and reducing labor-intensive cultivation processes. This study urges a shift towards molecular-level assessments in cryopreservation protocols for plant calli, advocating a deeper understanding of callus re-induction mechanisms and genetic fidelity post-thawing 
650 4 |a Journal Article 
650 4 |a Cryopreservation 
650 4 |a Extracellular matrix 
650 4 |a Ice-binding protein 
650 4 |a Mitochondrial function 
650 4 |a Plant callus 
650 7 |a Adenosine Triphosphate  |2 NLM 
650 7 |a 8L70Q75FXE  |2 NLM 
650 7 |a Fungal Proteins  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
700 1 |a Kwon, Gi-Sok  |e verfasserin  |4 aut 
700 1 |a Choi, Sunmee  |e verfasserin  |4 aut 
700 1 |a Kim, Soo-Yun  |e verfasserin  |4 aut 
700 1 |a Heo, Kyeong Yeon  |e verfasserin  |4 aut 
700 1 |a Kim, Young Soon  |e verfasserin  |4 aut 
700 1 |a Kim, Cha Young  |e verfasserin  |4 aut 
700 1 |a Kim, Soyoung  |e verfasserin  |4 aut 
700 1 |a Jeong, Jae Cheol  |e verfasserin  |4 aut 
700 1 |a Hwang, Jisub  |e verfasserin  |4 aut 
700 1 |a Lee, Jun Hyuck  |e verfasserin  |4 aut 
700 1 |a Lee, Jeong Hun  |e verfasserin  |4 aut 
700 1 |a Moh, Sang Hyun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 214(2024) vom: 12. Aug., Seite 108866  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:214  |g year:2024  |g day:12  |g month:08  |g pages:108866 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2024.108866  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 214  |j 2024  |b 12  |c 08  |h 108866