Surface Coating of NCM523 Cathode Electrodes by the Difunctional Block Copolymer/Lithium Salt Composites
Nickel-rich layered oxide cathodes, such as LiNi0.5Co0.2Mn0.3O2 (NCM523), are prevalent in high-power batteries owing to their high energy density. However, these cathodes suffer from undesirable side reactions occurring at the cathode/liquid electrolyte interface, leading to inferior interface stab...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 29 vom: 23. Juli, Seite 14863-14871 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Nickel-rich layered oxide cathodes, such as LiNi0.5Co0.2Mn0.3O2 (NCM523), are prevalent in high-power batteries owing to their high energy density. However, these cathodes suffer from undesirable side reactions occurring at the cathode/liquid electrolyte interface, leading to inferior interface stability and poor cycle life. To address these issues, herein, an amphiphilic diblock copolymer poly(dimethylsiloxane)-block-poly(acrylic acid) (PDMS-b-PAA) along with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is utilized for modifying the electrode surface. This modification causes a thin and stable cathode-electrolyte interface (CEI) on the surface of NCM523 particles, as evidenced by XPS, TEM, and EIS analysis. The introduction of this modified interface successfully suppresses the capacity fading of NCM523. After 200 cycles at a rate of 1.0 C, the capacity of the modified NCM523 cathode is 108.7 mAh g-1, with a capacity retention of 82.8%, while the control samples without the polymer modification display a capacity retention of 72.7%. These results outline the distinct advantage of electrode surface modification with diblock copolymers/LiTFSI for the stabilization of Ni-rich layered oxide cathodes |
---|---|
Beschreibung: | Date Revised 23.07.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c00776 |