Process-Informed Subsampling Improves Subseasonal Rainfall Forecasts in Central America

© 2024. The Authors.

Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters. - 1984. - 51(2024), 1 vom: 16. Jan., Seite e2023GL105891
1. Verfasser: Kowal, Katherine M (VerfasserIn)
Weitere Verfasser: Slater, Louise J, Li, Sihan, Kelder, Timo, Hall, Kyle J C, Moulds, Simon, García-López, Alan A, Birkel, Christian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Geophysical research letters
Schlagworte:Journal Article Central America ensemble extreme weather forecast rainfall subseasonal
LEADER 01000caa a22002652 4500
001 NLM374813647
003 DE-627
005 20240714233331.0
007 cr uuu---uuuuu
008 240712s2024 xx |||||o 00| ||eng c
024 7 |a 10.1029/2023GL105891  |2 doi 
028 5 2 |a pubmed24n1470.xml 
035 |a (DE-627)NLM374813647 
035 |a (NLM)38993631 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kowal, Katherine M  |e verfasserin  |4 aut 
245 1 0 |a Process-Informed Subsampling Improves Subseasonal Rainfall Forecasts in Central America 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024. The Authors. 
520 |a Subseasonal rainfall forecast skill is critical to support preparedness for hydrometeorological extremes. We assess how a process-informed evaluation, which subsamples forecasting model members based on their ability to represent potential predictors of rainfall, can improve monthly rainfall forecasts within Central America in the following month, using Costa Rica and Guatemala as test cases. We generate a constrained ensemble mean by subsampling 130 members from five dynamic forecasting models in the C3S multimodel ensemble based on their representation of both (a) zonal wind direction and (b) Pacific and Atlantic sea surface temperatures (SSTs), at the time of initialization. Our results show in multiple months and locations increased mean squared error skill by 0.4 and improved detection rates of rainfall extremes. This method is transferrable to other regions driven by slowly-changing processes. Process-informed subsampling is successful because it identifies members that fail to represent the entire rainfall distribution when wind/SST error increases 
650 4 |a Journal Article 
650 4 |a Central America 
650 4 |a ensemble 
650 4 |a extreme weather 
650 4 |a forecast 
650 4 |a rainfall 
650 4 |a subseasonal 
700 1 |a Slater, Louise J  |e verfasserin  |4 aut 
700 1 |a Li, Sihan  |e verfasserin  |4 aut 
700 1 |a Kelder, Timo  |e verfasserin  |4 aut 
700 1 |a Hall, Kyle J C  |e verfasserin  |4 aut 
700 1 |a Moulds, Simon  |e verfasserin  |4 aut 
700 1 |a García-López, Alan A  |e verfasserin  |4 aut 
700 1 |a Birkel, Christian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Geophysical research letters  |d 1984  |g 51(2024), 1 vom: 16. Jan., Seite e2023GL105891  |w (DE-627)NLM098182501  |x 0094-8276  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:1  |g day:16  |g month:01  |g pages:e2023GL105891 
856 4 0 |u http://dx.doi.org/10.1029/2023GL105891  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 1  |b 16  |c 01  |h e2023GL105891