Genetically-clustered antifungal phytocytokines and receptor protein family members cooperate to trigger plant immune signaling

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink serv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - (2024) vom: 09. Juli
1. Verfasser: Lintz, Julie (VerfasserIn)
Weitere Verfasser: Goto, Yukihisa, Bender, Kyle W, Bchini, Raphaël, Dubrulle, Guillaume, Cawston, Euan, Zipfel, Cyril, Duplessis, Sebastien, Petre, Benjamin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Antimicrobial peptide Pucciniales bifunctional peptide elicitor peptide pattern recognition receptor (PRR) pattern-triggered immunity (PTI) plant immunity woody plant
Beschreibung
Zusammenfassung:© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Phytocytokines regulate plant immunity by cooperating with cell-surface proteins. Populus trichocarpa RUST INDUCED SECRETED PEPTIDE 1 (PtRISP1) exhibits an elicitor activity in poplar, as well as a direct antimicrobial activity against rust fungi. PtRISP1 gene directly clusters with a gene encoding a leucine-rich repeat receptor protein (LRR-RP), that we termed RISP-ASSOCIATED LRR-RP (PtRALR). In this study, we used phylogenomics to characterize the RISP and RALR gene families, and molecular physiology assays to functionally characterize RISP/RALR pairs. Both RISP and RALR gene families specifically evolved in Salicaceae species (poplar and willow), and systematically cluster in the genomes. Despite a low sequence identity, Salix purpurea RISP1 (SpRISP1) shows properties and activities similar to PtRISP1. Both PtRISP1 and SpRISP1 induced a reactive oxygen species (ROS) burst and mitogen-activated protein kinases (MAPKs) phosphorylation in Nicotiana benthamiana leaves expressing the respective clustered RALR. PtRISP1 also triggers a rapid stomatal closure in poplar. Altogether, these results suggest that plants evolved phytocytokines with direct antimicrobial activities, and that the genes coding these phytocytokines co-evolved and physically cluster with genes coding LRR-RPs required to initiate immune signaling
Beschreibung:Date Revised 09.07.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1460-2431
DOI:10.1093/jxb/erae297