3D Reconstruction From a Single Sketch via View-Dependent Depth Sampling

Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 08. Dez., Seite 9661-9676
Auteur principal: Gao, Chenjian (Auteur)
Autres auteurs: Wang, Xilin, Yu, Qian, Sheng, Lu, Zhang, Jing, Han, Xiaoguang, Song, Yi-Zhe, Xu, Dong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM374642788
003 DE-627
005 20250306093336.0
007 cr uuu---uuuuu
008 240709s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3424404  |2 doi 
028 5 2 |a pubmed25n1248.xml 
035 |a (DE-627)NLM374642788 
035 |a (NLM)38976476 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Chenjian  |e verfasserin  |4 aut 
245 1 0 |a 3D Reconstruction From a Single Sketch via View-Dependent Depth Sampling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: first, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and second, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods 
650 4 |a Journal Article 
700 1 |a Wang, Xilin  |e verfasserin  |4 aut 
700 1 |a Yu, Qian  |e verfasserin  |4 aut 
700 1 |a Sheng, Lu  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Han, Xiaoguang  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 08. Dez., Seite 9661-9676  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:08  |g month:12  |g pages:9661-9676 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3424404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 08  |c 12  |h 9661-9676