Understanding the salinity resilience and productivity of halophytes in saline environments
Copyright © 2024 Elsevier B.V. All rights reserved.
Veröffentlicht in: | Plant science : an international journal of experimental plant biology. - 1985. - 346(2024) vom: 16. Juli, Seite 112171 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant science : an international journal of experimental plant biology |
Schlagworte: | Journal Article Review Crop yield Glycophyte Halophyte Salinity resistance Salinization |
Zusammenfassung: | Copyright © 2024 Elsevier B.V. All rights reserved. The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes |
---|---|
Beschreibung: | Date Completed 15.07.2024 Date Revised 15.07.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2259 |
DOI: | 10.1016/j.plantsci.2024.112171 |