Spectral Embedding Fusion for Incomplete Multiview Clustering

Incomplete multiview clustering (IMVC) aims to reveal the underlying structure of incomplete multiview data by partitioning data samples into clusters. Several graph-based methods exhibit a strong ability to explore high-order information among multiple views using low-rank tensor learning. However,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 4116-4130
1. Verfasser: Chen, Jie (VerfasserIn)
Weitere Verfasser: Chen, Yingke, Wang, Zhu, Zhang, Haixian, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374515557
003 DE-627
005 20240710232453.0
007 cr uuu---uuuuu
008 240705s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3420796  |2 doi 
028 5 2 |a pubmed24n1466.xml 
035 |a (DE-627)NLM374515557 
035 |a (NLM)38963735 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Jie  |e verfasserin  |4 aut 
245 1 0 |a Spectral Embedding Fusion for Incomplete Multiview Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Incomplete multiview clustering (IMVC) aims to reveal the underlying structure of incomplete multiview data by partitioning data samples into clusters. Several graph-based methods exhibit a strong ability to explore high-order information among multiple views using low-rank tensor learning. However, spectral embedding fusion of multiple views is ignored in low-rank tensor learning. In addition, addressing missing instances or features is still an intractable problem for most existing IMVC methods. In this paper, we present a unified spectral embedding tensor learning (USETL) framework that integrates the spectral embedding fusion of multiple similarity graphs and spectral embedding tensor learning for IMVC. To remove redundant information from the original incomplete multiview data, spectral embedding fusion is performed by introducing spectral rotations at two different data levels, i.e., the spectral embedding feature level and the clustering indicator level. The aim of introducing spectral embedding tensor learning is to capture consistent and complementary information by seeking high-order correlations among multiple views. The strategy of removing missing instances is adopted to construct multiple similarity graphs for incomplete multiple views. Consequently, this strategy provides an intuitive and feasible way to construct multiple similarity graphs. Extensive experimental results on multiview datasets demonstrate the effectiveness of the two spectral embedding fusion methods within the USETL framework 
650 4 |a Journal Article 
700 1 |a Chen, Yingke  |e verfasserin  |4 aut 
700 1 |a Wang, Zhu  |e verfasserin  |4 aut 
700 1 |a Zhang, Haixian  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 22., Seite 4116-4130  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:22  |g pages:4116-4130 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3420796  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 22  |h 4116-4130