2D PtRhPb Mesoporous Nanosheets with Surface-Clean Active Sites for Complete Ethanol Oxidation Electrocatalysis

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 35 vom: 04. Aug., Seite e2407940
Auteur principal: Fan, Dongping (Auteur)
Autres auteurs: Yao, Huiqin, Sun, Lizhi, Lv, Hao, Liu, Ben
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article 2D metals C1 selectivity electrocatalysis ethanol oxidation mesoporous materials
Description
Résumé:© 2024 Wiley‐VCH GmbH.
The development of active and selective metal electrocatalysts for complete ethanol oxidation reaction (EOR) into desired C1 products is extremely promising for practical application of direct ethanol fuel cells. Despite some encouraging achievements, their activity and selectivity remain unsatisfactory. In this work, it is reported that 2D PtRhPb mesoporous nanosheets (MNSs) with anisotropic structure and surface-clean metal site perform perfectly for complete EOR electrocatalysis in both three-electrode and two-electrode systems. Different to the traditional routes, a selective etching strategy is developed to produce surface-clean mesopores while retaining parent anisotropy quasi-single-crystalline structure without the mesopore-forming surfactants. This method also allows the general synthesis of surface-clean mesoporous metals with other compositions and structures. When being performed for alkaline EOR electrocatalysis, the best PtRhPb MNSs deliver remarkably high activity (7.8 A mg-1) and superior C1 product selectivity (70% of Faradaic efficiency), both of which are much better than reported electrocatalysts. High performance is assigned to multiple structural and compositional synergies that not only stabilized key OHads intermediate by surface-clean mesopores but also separated the chemisorption of two carbons in ethanol by adjacent Pt and Rh sites, which facilitate the oxidation cleavage of stable C─C bond for complete EOR electrocatalysis
Description:Date Revised 28.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202407940