Degradation Behavior of Medical MgZZC-1 in Various Simulated Body Fluids

Magnesium-based biodegradable metal bone implants exhibit superior mechanical properties compared to biodegradable polymers for orthopedic and cardiovascular stents. In this study, MgZZC-x (x = 1, 1.2) alloys were screened by in vitro biocompatibility tests in three simulated body fluids under nonto...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 28 vom: 16. Juli, Seite 14674-14684
1. Verfasser: Pan, Jie (VerfasserIn)
Weitere Verfasser: Zhang, Jinling, Li, Yelei, Yang, Fanxi, Yu, Yanchong, Wang, Shebin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Alloys Magnesium I38ZP9992A Biocompatible Materials
LEADER 01000caa a22002652 4500
001 NLM374462534
003 DE-627
005 20240716233119.0
007 cr uuu---uuuuu
008 240704s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c01715  |2 doi 
028 5 2 |a pubmed24n1472.xml 
035 |a (DE-627)NLM374462534 
035 |a (NLM)38958429 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Jie  |e verfasserin  |4 aut 
245 1 0 |a Degradation Behavior of Medical MgZZC-1 in Various Simulated Body Fluids 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2024 
500 |a Date Revised 16.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Magnesium-based biodegradable metal bone implants exhibit superior mechanical properties compared to biodegradable polymers for orthopedic and cardiovascular stents. In this study, MgZZC-x (x = 1, 1.2) alloys were screened by in vitro biocompatibility tests in three simulated body fluids under nontoxic conditions. The MgZZC-1 alloys with better biocompatibility were selected to predict the days required for complete degradation. The evolution of degradation products was analyzed, and the mechanism of formation of the product film was inferred. A degradation kinetic model was established to investigate the effect of MEM components on the degradation of the alloys. The results demonstrate that the proteins in MEM can greatly retard the degradation progress by attaching to the surface of MgZZC-1 alloys, which are predicted to degrade completely within 341 days. The carbonate and phosphate buffers were adjusted to pH in MEM solution, delaying the degradation of magnesium alloys. This process in MEM more accurately reflects the actual degradation in the body and is superior to that in Hanks and SBF solutions. This study will promote the application of biodegradable materials in clinical medicine 
650 4 |a Journal Article 
650 7 |a Alloys  |2 NLM 
650 7 |a Magnesium  |2 NLM 
650 7 |a I38ZP9992A  |2 NLM 
650 7 |a Biocompatible Materials  |2 NLM 
700 1 |a Zhang, Jinling  |e verfasserin  |4 aut 
700 1 |a Li, Yelei  |e verfasserin  |4 aut 
700 1 |a Yang, Fanxi  |e verfasserin  |4 aut 
700 1 |a Yu, Yanchong  |e verfasserin  |4 aut 
700 1 |a Wang, Shebin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 28 vom: 16. Juli, Seite 14674-14684  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:28  |g day:16  |g month:07  |g pages:14674-14684 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c01715  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 28  |b 16  |c 07  |h 14674-14684