Current status data with two competing risks and time-dependent missing failure types

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 9 vom: 23., Seite 1689-1708
1. Verfasser: Koley, Tamalika (VerfasserIn)
Weitere Verfasser: Dewanji, Anup
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Monitoring time identifiability interval hazards masking probabilities maximum likelihood estimation sub-distribution function
Beschreibung
Zusammenfassung:© 2023 Informa UK Limited, trading as Taylor & Francis Group.
In competing risks data, in practice, there may be lack of information or uncertainty about the true failure type, termed as 'missing failure type', for some subjects. We consider a general pattern of missing failure type in which we observe, if not the true failure type, a set of possible failure types containing the true one. In this work, we focus on both parametric and non-parametric estimation based on current status data with two competing risks and the above-mentioned missing failure type. Here, the missing probabilities are assumed to be time-dependent, that is, dependent on both failure and monitoring time points, in addition to being dependent on the true failure type. This makes the missing mechanism non-ignorable. We carry out maximum likelihood estimation and obtain the asymptotic properties of the estimators. Simulation studies are conducted to investigate the finite sample properties of the estimators. Finally, the methods are illustrated through a data set on hearing loss
Beschreibung:Date Revised 12.07.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2023.2231174