Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels

Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-aut...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 01. Juli
1. Verfasser: Pan, Cong (VerfasserIn)
Weitere Verfasser: Peng, Junran, Bu, Xingyuan, Zhang, Zhaoxiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM374378193
003 DE-627
005 20240703233627.0
007 cr uuu---uuuuu
008 240703s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3421300  |2 doi 
028 5 2 |a pubmed24n1458.xml 
035 |a (DE-627)NLM374378193 
035 |a (NLM)38949947 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Cong  |e verfasserin  |4 aut 
245 1 0 |a Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Training with more data has always been the most stable and effective way of improving performance in the deep learning era. The Open Images dataset, the largest object detection dataset, presents significant opportunities and challenges for general and sophisticated scenarios. However, its semi-automatic collection and labeling process, designed to manage the huge data scale, leads to label-related problems, including explicit or implicit multiple labels per object and highly imbalanced label distribution. In this work, we quantitatively analyze the major problems in large-scale object detection and provide a detailed yet comprehensive demonstration of our solutions. First, we design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-balance sampling method with a hybrid training scheduler to address the label imbalance. This approach yields a notable improvement of 3.34 points, achieving the best single-model performance with a mAP of 60.90% on the public object detection test set of Open Images. Then, we introduce a well-designed ensemble mechanism that substantially enhances the performance of the single model, achieving an overall mAP of 67.17%, which is 4.29 points higher than the best result from the Open Images public test 2018. Our result is published on https://www.kaggle.com/c/open-images-2019-object-detection/leaderboard 
650 4 |a Journal Article 
700 1 |a Peng, Junran  |e verfasserin  |4 aut 
700 1 |a Bu, Xingyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhaoxiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 01. Juli  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:01  |g month:07 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3421300  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 01  |c 07