Learning to Discover Knowledge : A Weakly-Supervised Partial Domain Adaptation Approach

Domain adaptation has shown appealing performance by leveraging knowledge from a source domain with rich annotations. However, for a specific target task, it is cumbersome to collect related and high-quality source domains. In real-world scenarios, large-scale datasets corrupted with noisy labels ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 04., Seite 4090-4103
1. Verfasser: Lan, Mengcheng (VerfasserIn)
Weitere Verfasser: Meng, Min, Yu, Jun, Wu, Jigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Domain adaptation has shown appealing performance by leveraging knowledge from a source domain with rich annotations. However, for a specific target task, it is cumbersome to collect related and high-quality source domains. In real-world scenarios, large-scale datasets corrupted with noisy labels are easy to collect, stimulating a great demand for automatic recognition in a generalized setting, i.e., weakly-supervised partial domain adaptation (WS-PDA), which transfers a classifier from a large source domain with noises in labels to a small unlabeled target domain. As such, the key issues of WS-PDA are: 1) how to sufficiently discover the knowledge from the noisy labeled source domain and the unlabeled target domain, and 2) how to successfully adapt the knowledge across domains. In this paper, we propose a simple yet effective domain adaptation approach, termed as self-paced transfer classifier learning (SP-TCL), to address the above issues, which could be regarded as a well-performing baseline for several generalized domain adaptation tasks. The proposed model is established upon the self-paced learning scheme, seeking a preferable classifier for the target domain. Specifically, SP-TCL learns to discover faithful knowledge via a carefully designed prudent loss function and simultaneously adapts the learned knowledge to the target domain by iteratively excluding source examples from training under the self-paced fashion. Extensive evaluations on several benchmark datasets demonstrate that SP-TCL significantly outperforms state-of-the-art approaches on several generalized domain adaptation tasks. Code is available at https://github.com/mc-lan/SP-TCL
Beschreibung:Date Revised 04.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3418581