A Survey of Knowledge Graph Reasoning on Graph Types : Static, Dynamic, and Multi-Modal

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 04. Nov., Seite 9456-9478
1. Verfasser: Liang, Ke (VerfasserIn)
Weitere Verfasser: Meng, Lingyuan, Liu, Meng, Liu, Yue, Tu, Wenxuan, Wang, Siwei, Zhou, Sihang, Liu, Xinwang, Sun, Fuchun, He, Kunlun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM374290938
003 DE-627
005 20241108232245.0
007 cr uuu---uuuuu
008 240629s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3417451  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM374290938 
035 |a (NLM)38941209 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Ke  |e verfasserin  |4 aut 
245 1 2 |a A Survey of Knowledge Graph Reasoning on Graph Types  |b Static, Dynamic, and Multi-Modal 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers 
650 4 |a Journal Article 
700 1 |a Meng, Lingyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Meng  |e verfasserin  |4 aut 
700 1 |a Liu, Yue  |e verfasserin  |4 aut 
700 1 |a Tu, Wenxuan  |e verfasserin  |4 aut 
700 1 |a Wang, Siwei  |e verfasserin  |4 aut 
700 1 |a Zhou, Sihang  |e verfasserin  |4 aut 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
700 1 |a Sun, Fuchun  |e verfasserin  |4 aut 
700 1 |a He, Kunlun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 04. Nov., Seite 9456-9478  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:04  |g month:11  |g pages:9456-9478 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3417451  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 04  |c 11  |h 9456-9478